加载中...
eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

Partner – LambdaTest – NPI EA (cat= Testing)
announcement - icon

Distributed systems often come with complex challenges such as service-to-service communication, state management, asynchronous messaging, security, and more.

Dapr (Distributed Application Runtime) provides a set of APIs and building blocks to address these challenges, abstracting away infrastructure so we can focus on business logic.

In this tutorial, we'll focus on Dapr's pub/sub API for message brokering. Using its Spring Boot integration, we'll simplify the creation of a loosely coupled, portable, and easily testable pub/sub messaging system:

>> Flexible Pub/Sub Messaging With Spring Boot and Dapr

1. Overview

In this quick article, we’ll introduce the java.util.Stack class and start looking at how we can make use of it.

A stack is a generic data structure that represents a LIFO (last in, first out) collection of objects allowing for pushing/popping elements in constant time.

For the new implementations, we should favor the Deque interface and its implementationsDeque defines a more complete and consistent set of LIFO operations. However, we may still need to deal with the Stack class, especially in legacy code, so it’s important to understand it well.

2. Create a Stack

Let’s start by creating an empty instance of Stack, by using the default, no-argument constructor:

@Test
public void whenStackIsCreated_thenItHasSizeZero() {
    Stack<Integer> intStack = new Stack<>();
    
    assertEquals(0, intStack.size());
}

This will create a Stack with the default capacity of 10. If the number of added elements exceeds the total Stack size, it will be doubled automatically. However, its size will never shrink after removing elements.

3. Synchronization for Stack

Stack is a direct subclass of Vector; this means that similarly to its superclass, it’s a synchronized implementation.

However, synchronization isn’t always needed, in such cases, it’s advised to use ArrayDeque.

4. Add into a Stack

Let’s start by adding an element to the top of the Stack, with the push() method – which also returns the element that was added:

@Test
public void whenElementIsPushed_thenStackSizeIsIncreased() {
    Stack<Integer> intStack = new Stack<>();
    intStack.push(1);
    
    assertEquals(1, intStack.size());
}

Using push() method has the same effect as using addElement(). The only difference is that addElement() returns the result of the operation, instead of the element that was added.

We can also add multiple elements at once:

@Test
public void whenMultipleElementsArePushed_thenStackSizeIsIncreased() {
    Stack<Integer> intStack = new Stack<>();
    List<Integer> intList = Arrays.asList(1, 2, 3, 4, 5, 6, 7);
    
    boolean result = intStack.addAll(intList);
    
    assertTrue(result);
    assertEquals(7, intList.size());
}

5. Retrieve from a Stack

Next, let’s have a look at how to get and remove the last element in a Stack:

@Test
public void whenElementIsPoppedFromStack_thenElementIsRemovedAndSizeChanges() {
    Stack<Integer> intStack = new Stack<>();
    intStack.push(5);

    Integer element = intStack.pop();
    
    assertEquals(Integer.valueOf(5), element);
    assertTrue(intStack.isEmpty());
}

We can also get the last element of the Stack without removing it:

@Test
public void whenElementIsPeeked_thenElementIsNotRemovedAndSizeDoesNotChange() {
    Stack<Integer> intStack = new Stack<>();
    intStack.push(5);

    Integer element = intStack.peek();

    assertEquals(Integer.valueOf(5), element);
    assertEquals(1, intStack.search(5));
    assertEquals(1, intStack.size());
}

6. Search for an Element in a Stack

Stack allows us to search for an element and get its distance from the top:

@Test
public void whenElementIsOnStack_thenSearchReturnsItsDistanceFromTheTop() {
    Stack<Integer> intStack = new Stack<>();
    intStack.push(5);
    intStack.push(8);

    assertEquals(2, intStack.search(5));
}

The result is an index of a given object. If more than one element is present, the index of the one closest to the top is returned. The item that is on the top of the stack is considered to be at position 1.

If the object is not found, search() will return -1.

6.2. Getting Index of Element

To get an index of an element on the Stack, we can also use the indexOf() and lastIndexOf() methods:

@Test
public void whenElementIsOnStack_thenIndexOfReturnsItsIndex() {
    Stack<Integer> intStack = new Stack<>();
    intStack.push(5);
    
    int indexOf = intStack.indexOf(5);
    
    assertEquals(0, indexOf);
}

The lastIndexOf() will always find the index of the element that’s closest to the top of the stack. This works very similarly to search() – with the important difference that it returns the index, instead of the distance from the top:

@Test
public void whenMultipleElementsAreOnStack_thenIndexOfReturnsLastElementIndex() {
    Stack<Integer> intStack = new Stack<>();
    intStack.push(5);
    intStack.push(5);
    intStack.push(5);
    
    int lastIndexOf = intStack.lastIndexOf(5);
    
    assertEquals(2, lastIndexOf);
}

7. Remove Elements from a Stack

Apart from the pop() operation, used both for removing and retrieving elements, we can also use multiple operations inherited from the Vector class to remove elements.

7.1. Removing Specified Elements

We can use the removeElement() method to remove the first occurrence of the given element:

@Test
public void whenRemoveElementIsInvoked_thenElementIsRemoved() {
    Stack<Integer> intStack = new Stack<>();
    intStack.push(5);
    intStack.push(5);

    intStack.removeElement(5);
    
    assertEquals(1, intStack.size());
}

We can also use the removeElementAt() to delete elements under a specified index in the Stack:

    @Test
    public void whenRemoveElementAtIsInvoked_thenElementIsRemoved() {
        Stack<Integer> intStack = new Stack<>();
        intStack.push(5);
        intStack.push(7);
        
        intStack.removeElementAt(1);
        
        assertEquals(-1, intStack.search(7));
    }

7.2. Removing Multiple Elements

Let’s have a quick look at how to remove multiple elements from a Stack using the removeAll() API – which will take a Collection as an argument and remove all matching elements from the Stack:

@Test
public void givenElementsOnStack_whenRemoveAllIsInvoked_thenAllElementsFromCollectionAreRemoved() {
    Stack<Integer> intStack = new Stack<>();
    List<Integer> intList = Arrays.asList(1, 2, 3, 4, 5, 6, 7);
    intStack.addAll(intList);
    intStack.add(500);

    intStack.removeAll(intList);

    assertEquals(1, intStack.size());
    assertEquals(1, intStack.search(500));
}

It’s also possible to remove all elements from the Stack using the clear() or removeAllElements() methods; both of those methods work the same:

@Test
public void whenRemoveAllElementsIsInvoked_thenAllElementsAreRemoved() {
    Stack<Integer> intStack = new Stack<>();
    intStack.push(5);
    intStack.push(7);

    intStack.removeAllElements();

    assertTrue(intStack.isEmpty());
}

7.3. Removing Elements Using Filter

We can also use a condition for removing elements from the Stack. Let’s see how to do this using the removeIf(), with a filter expression as an argument:

@Test
public void whenRemoveIfIsInvoked_thenAllElementsSatysfyingConditionAreRemoved() {
    Stack<Integer> intStack = new Stack<>();
    List<Integer> intList = Arrays.asList(1, 2, 3, 4, 5, 6, 7);
    intStack.addAll(intList);
    
    intStack.removeIf(element -> element < 6);
    
    assertEquals(2, intStack.size());
}

8. Iterate Over a Stack

Stack allows us to use both an Iterator and a ListIterator. The main difference is that the first one allows us to traverse Stack in one direction and second allows us to do this in both directions:

@Test
public void whenAnotherStackCreatedWhileTraversingStack_thenStacksAreEqual() {
    Stack<Integer> intStack = new Stack<>();
    List<Integer> intList = Arrays.asList(1, 2, 3, 4, 5, 6, 7);
    intStack.addAll(intList);
    
    ListIterator<Integer> it = intStack.listIterator();
    
    Stack<Integer> result = new Stack<>();
    while(it.hasNext()) {
        result.push(it.next());
    }

    assertThat(result, equalTo(intStack));
}

All Iterators returned by Stack are fail-fast.

9. Stream API for the Java Stack

Stack is a collection, which means we can use it with Java 8 Streams API. Using Stream with the Stack is similar to using it with any other Collection:

@Test
public void whenStackIsFiltered_allElementsNotSatisfyingFilterConditionAreDiscarded() {
    Stack<Integer> intStack = new Stack<>();
    List<Integer> inputIntList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 9, 10);
    intStack.addAll(inputIntList);

    List<Integer> filtered = intStack
      .stream()
      .filter(element -> element <= 3)
      .collect(Collectors.toList());

    assertEquals(3, filtered.size());
}

10. Summary

This tutorial is a quick and practical guide to understand this core class in Java – the Stack.

Of course, you can explore the full API in the Javadoc.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)